The Dissociation Constants of Amino-acids in Deuterium Oxide

By I. N. GORDON and B. M. LOWE*

(Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3[])

Summary The isotope effect log $K_{\rm H}/K_{\rm D}$ for the first dissociation constants of the amino-acids in the series ${\rm H_3N^+[CH_2]_xCO_2H}, 1 \leqslant x \leqslant 5$, and $[{\rm CH_3}]_y{\rm N^+H_{3-y}}$ CH₂-CO₂H, $0 \leqslant y \leqslant 3$, shows a good linear correlation with $pK_{\rm H}$.

ALTHOUGH there are theoretical grounds^{1,2} for believing that for a series of structurally related acids the dissociation constants in H₂O ($K_{\rm H}$) and in D₂O ($K_{\rm D}$) should be related by equation (1) in

$$pK_{\mathbf{p}} - pK_{\mathbf{H}} = \Delta pK = a + bpK_{\mathbf{H}}$$
(1)

which a and b are constants this is not, in general, supported by experimental results.³ It has been shown⁴ that although ΔpK and $pK_{\rm H}$ for some phenols and alcohols are linearly correlated, experimental results⁴ for carboxylic acids provide little evidence for this relationship. We here report measurements which show that equation (1) holds for the ionisation of the carboxyl group in a series of structurally related acids.

We have determined the thermodynamic dissociation constants $K [=(L_3O^+)(Z^{\pm})/(L_2O)(ZL^+)]$ (L = H or D) for the series of amino-acids for which $ZH^+ \equiv H_3N^+[CH_2]_{x^-}$ $CO_2H (x = 1, 2, 3, and 5)$ and that for which $ZH^+ \equiv [CH_3]_{y^-}$ $N^+H_{3-y}CH_2CO_2H (y = 1, 2, and 3)$, and also for DL- α alanine. The values were obtained for solutions in ordinary water and a range of H_2O-D_2O mixtures, at 25°, by means of the cell,

Glass
$$ZH^+Cl^-(m_1), Z^{\pm}(m_2)$$
AgCl, Ag.Electrode (H_2O-D_2O)

The "standard" e.m.f. required for the calculation of K was determined from measurements with hydrochloric acid in solvents of identical composition. Changes in the asymmetry potential of the glass electrode were taken into

account. Measurements were made for a range of ionic strengths for each acid and solvent mixture and the thermodynamic dissociation constants were determined by extrapolation to zero ionic strength.⁵ The method is capable of a precision of ± 0.001 and an accuracy of ± 0.004 log units. The values obtained for $pK_{\rm H}$ are in good agreement with those of previous workers, e.g. for glycine $pK_{\rm H} = 2.351$ cf.

2.350.6The dissociation constants K_n obtained for 5 or 6 evenly spaced solvent deuterium atom fractions n (including one with n > 0.95), along with the value for ordinary water, were fitted to equation $(2)^7$ by a least-squares procedure

$$K_n = K_{\rm H} (1 - n + nl)^3 / (1 - n + n\phi) \tag{2}$$

which was used to determine $K_{\rm H}$ and ϕ (the fractionation factor for the carboxyl hydrogen). The value obtained for $K_{\rm ff}$ agreed with the measured value within experimental error. The value of $K_{\rm p}$ given by equation (2) with n = 1, is insensitive to the value $(0.69)^7$ used for l (the fractionation factor for the lyonium ion). Although equation (2) is based on a number of assumptions7 it was found to represent the experimental pK_n results with a standard deviation of 0.004 log units, and to provide a better basis for extrapolation than an empirical trinomial equation in n.

For glycine the value obtained for ΔpK (0.427) (molarity scale, as are all values here) is intermediate between those reported, at 25°, by earlier workers (0.54),⁸ (0.39)⁹ and for α -alanine our value (0.421) is below that (0.49)⁸ found previously; isotope effects have not been reported for the other acids investigated.

The $\Delta p K$ values (Figure) obtained for all the acids except betaine (y = 3) are represented by equation (1) with a = 0.332 and b = 0.040. The low standard deviation $(0.003 \log units)$ and the high correlation coefficient (0.996)obtained for this regression line reflect the close structural similarities between the acids and in particular the fact that for the H₃N+[CH₂]_zCO₂H series the groups (NH₃+, CO_2H , and CO_2^{-}) involved in hydrogen bonding with the solvent are the same for each acid. That $\Delta p K$ for betaine lies above the regression line by more than 0.02 units is

- 1 R. P. Bell, "The Proton in Chemistry," Methuen, London, 1959, pp. 187-190.
- ² C. A. Bunton and V. J. Shiner, J. Amer. Chem. Soc., 1961, 83, 42.
- ³ A. O. McDougall and F. A. Long, J. Phys. Chem., 1962, 66, 429; R. A. Robinson, M. Paabo, and R. G. Bates, J. Res. Nat. Bur. Stand., Sect. A, 1969, 73, 289.

 - ⁴ R. P. Bell and A. T. Kuhn, Trans. Faraday Soc., 1963, 59, 1789.
 ⁵ E. J. King, "Acid-Base Equilibria," Pergamon, Oxford, 1965, pp. 49-50.
 ⁶ E. J. King, J. Amer. Chem. Soc., 1951, 73, 155; B. B. Owen, *ibid.*, 1934, 56, 24.
 - 7 V. Gold, Adv. Phys. Org. Chem., 1969, 7, 259.
 - ⁸ H. H. Hyman, A. Kaganove, and J. J. Katz, J. Phys. Chem., 1960, 64, 1653.
 ⁹ N. C. Li, P. Tang, and R. Mathur, J. Phys. Chem., 1961, 65, 1074.

almost certainly due to the different ways in which $-N(CH_3)_3^+$ and $-NH_3^+$ interact with the solvent.

FIGURE. Isotope effects ΔpK as a function of $pK_{\rm H}$. \bigcirc : acids of type $H_3N^+[CH_2]_xCO_2H$; \square : acids of type $[CH_3]_yN^+H_{3-y}CH_3^-CO_2H$. Numbers are values of x and y. Point 2a is for DL-a-The line represents equation (1) with a = 0.332 and alanine. $\mathbf{b} = \mathbf{0.040}.$

The slope (b = 0.040) for the amino-acids is over twice that for phenols and alcohols (b = 0.017);⁴ this probably arises from the differing extents to which the phenoxide and carboxylate anions form hydrogen bonds with the solvent and is in agreement with a simple theoretical estimation, based on the method of Bunton and Shiner,² which gives b = 0.032 for carboxylic acids and 0.020 for phenols.

I.N.G. thanks Durham County Education Committee for a Studentship.

(Received, May 5th, 1970; Com. 679.)